

Cosmic Ray: mutation testing for Python

“Four human beings – changed by space-born cosmic rays into something more than merely human.”
— The Fantastic Four

Cosmic Ray is a mutation testing tool for Python 3. It makes small changes to
your source code, running your test suite for each one. If a test suite passes
on mutated code, then you have a mismatch between your tests and your
functionality.

Cosmic Ray has been successfully used on a wide variety of projects ranging from
assemblers to oil exploration software.

Contents

	Theory

	Tutorial: The basics

	Tutorial: Distributed, concurrent mutation testing

	Concepts

	How-tos

	Reference

Indices and tables

	Index

	Module Index

	Search Page

Theory

Mutation testing is conceptually simple and elegant. You make certain
kinds of controlled changes (mutations) to your code, and then you run
your test suite over this mutated code. If your test suite fails, then
we say that your tests “killed” (i.e. detected) the mutant. If the
changes cause your code to simply crash, then we say the mutant is
“incompetent”. If your test suite passes, however, we say that the
mutant has “survived”.

Needless to say, we want to kill all of the mutants.

The goal of mutation testing is to verify that your test suite is
actually testing all of the parts of your code that it needs to, and
that it is doing so in a meaningful way. If a mutant survives your test
suite, this is an indication that your test suite is not adequately
checking the code that was changed. This means that either a) you need
more or better tests or b) you’ve got code which you don’t need.

You can read more about mutation testing at the repository of all human
knowledge [https://en.wikipedia.org/wiki/Mutation_testing]. Lionel
Brian has a nice set of
slides [http://www.uio.no/studier/emner/matnat/ifi/INF4290/v10/undervisningsmateriale/INF4290-Mutest.pdf]
introducing mutation testing as well.

Tutorial: The basics

This tutorial will walk you through the steps needed to install, configure, and run Cosmic
Ray.

Installation

First you’ll need to install Cosmic Ray. The simplest (and generally best) way to do this is with pip:

pip install cosmic-ray

You’ll generally want to do this in a virtual environment, but it’s not required.

Source module and tests

Mutation testing works by making small mutations to the code under test (CUT) and then running a test suite
over the mutated code. For this tutorial, then, we’ll need to create our CUT and a test suite for it.

You should create a new directory which will contain the CUT, the tests, and eventually the Cosmic Ray data.
For the rest of this tutorial we’ll refer to this new directory as ROOT (or $ROOT if we’re showing shell code).

Now create the file ROOT/mod.py with these contents:

def func():
 return 1234

This file contains your code under test, i.e. the code that Cosmic Ray will mutate. It’s clearly very simple, and it has
very few opportunities for mutation, but it’s sufficient for this tutorial. In fact, having simple code like this will
make it easier to see what Cosmic Ray is doing without getting bogged down by scale.

Next create the file ROOT/test_mod.py with these contents:

import unittest
import mod

class Tests(unittest.TestCase):
 def test_func(self):
 self.assertEqual(mod.func(), 1234)

This contains the test suite for mod.py. Cosmic Ray will not mutate this code. Rather, it will run this test suite
for every mutation that it creates.

Before moving on, let’s make sure that the test suite works correctly:

python -m unittest test_mod.py

This should show that all tests pass:

.
--
Ran 1 test in 0.000s

OK

If you see one test passing like this, then you’re ready to continue!

Creating a configuration

Before you do run any mutation tests, you need to create a configuration.
A configuration is a TOML file that specifies the modules you want to mutate, the
test scripts to use, and so forth. A configuration is used to create a session,
something we’ll look at in the next section.

The new-config command

You can create a configuration by hand if you want. In fact, you’ll generally
need to edit them by hand to get the exact configuration you need. But you can
create an initial configuration using the new-config command. This will ask
you a series of questions and construct a new configuration based on your
answers.

To create your config for this tutorial, do this:

cd $ROOT
cosmic-ray new-config tutorial.toml

This will ask you a series of questions. Anwer them like this:

[?] Top-level module path: mod.py
[?] Python version (blank for auto detection):
[?] Test execution timeout (seconds): 10
[?] Test command: python -m unittest test_mod.py
-- MENU: Distributor --
 (0) http
 (1) local
[?] Enter menu selection: 1

This will create the file tutorial.toml with these contents:

	1
2
3
4
5
6
7
8

	[cosmic-ray]
module-path = "mod.py"
timeout = 10.0
excluded-modules = []
test-command = "python -m unittest test_mod.py"

[cosmic-ray.distributor]
name = "local"

Configuration contents

Let’s examine the contents of this file before moving on. On line 1 we define the ‘cosmic-ray’ key in the TOML
structure; this key will contain all Cosmic Ray configuration information.

On line 2 we set the ‘module-path’ key to the string “mod.py”:

module-path = "mod.py"

This tells Cosmic Ray that we’re going to be mutating the module in the file mod.py. Every Cosmic Ray configuration
refers to a single top-level module that will be mutated, and in this case we’re telling Cosmic Ray to mutate the
mod module, contained in the file mod.py.

Note

The ‘module-path’ is a path to a file or directory, not the name of the module of package. If it’s a file then
Cosmic Ray will treat it as a single module, but if it’s a directory then Cosmic Ray will treat it as a package.

When working on a package, Cosmic Ray will apply mutations to all submodules in the package.

Line 3 tells Cosmic Ray the maximium amount of time to let a test run before it’s considered a failure:

timeout = 10.0

In this case, we’re telling Cosmic Ray to kill a test if it runs longer than 10 seconds. This timeout is important because
some mutations can cause the tests to go into an infinite loop. Without timeout we’d never exit the test! It’s important to
set this timeout such that it’s long enough for all legitimate tests.

Next, line 4 tells Cosmic Ray which modules to exclude from mutation:

excluded-modules = []

In this case we’re not excluding any, but there may be times when you need to skip certain modules, e.g. because
you know that you don’t have sufficient tests for them at the moment.

Line 5 is one of the most critical lines in the configuration. This tells Cosmic Ray how to run your test suite:

test-command = "python -m unittest test_mod.py"

In this case, our test suite uses the standard unittest testing framework [https://docs.python.org/3/library/unittest.html], and the tests are in the file test_mod.py.

The last two lines tell Cosmic Ray which “distributor” to use:

[cosmic-ray.distributor]
name = "local"

A distributor controls how mutation jobs are assigned to one or more workers so that they can (potentially) run in
parallel. In this case we’re using the default ‘local’ distributor which only runs one mutation at a time. There are
other, more sophisticated distributors which we discuss elsewhere.

Create a session and baseline

Cosmic Ray uses a notion of sessions to encompass a full mutation testing
suite. Since mutation testing runs can take a long time, and since you might
need to stop and start them, sessions store data about the progress of a run.

Note

Most Cosmic Ray commands allow you to increase their “verbosity” via the command line. This will make them print out
more information about what they’re doing.

Try adding “–verbosity INFO” to the command you run if you more details about
what’s going on!

Initializing a session

The first step in a full testing run, then, is to initialize a session:

cosmic-ray init tutorial.toml tutorial.sqlite

Note

This command prepares all the mutations that will later be applied to code.
As such, its execution time is proportional to the amount of code and
the code complexitly. You can expect about 15-30s per 1kloc.

This will create a database file called tutorial.sqlite. There is a record in the database for each mutation that
Cosmic Ray will perform, and Cosmic Ray will associate testing results with these records as it executes.

Baselining

Before running the full mutation suite, it’s important to make sure that the test suite passes in the absence of any
mutations. If the test suite does not pass in the absence of mutations, then the results of the mutation testing are
essentially useless.

You can use the baseline command to check that the test suite passes on unmutated code:

cosmic-ray baseline --report tutorial.toml tutorial.sqlite

This should report that the tests pass:

Execution with no mutation works fine.

You’ll also see that there is a new tutorial.baseline.sqlite database containing the results of the baselining.

Tip

Only one baseline can be stored in the baseline database. If the execution failed
and you fixed the environment without changing the source code, you
can re-baseline it with --force option without the need to run init
again.

If this command succeeds, then you’re ready to start mutating code and testing it!

Examining the session with cr-report

Our session file, tutorial.sqlite, is essentially a list of mutations that Cosmic Ray will perform on the
code under test. We haven’t actually tested any mutants, so none of our mutations have testing results yet. With
that in mind, let’s examine the contents of our session with the cr-report program:

cr-report tutorial.sqlite --show-pending

This will produce output like this (though note that the test IDs will be different):

574ac31ac7d14169a8dc45d988803e69 mod.py core/NumberReplacer 1
8f0e988866f447d085ce9887e6e900e5 mod.py core/NumberReplacer 0
total jobs: 2
no jobs completed

This is telling us that Cosmic Ray detected two mutations that it can make to our code, both using the
mutation operator “core/NumberReplacer”. Without going into details, this means that Cosmic Ray has found
one or more numeric literals in our code, and it plans to make two mutations to those numbers. We can see in our
code that there is only one numeric literal, the value returned from func() on line 2:

	1
2

	def func():
 return 1234

So Cosmic Ray is going to mutate that number in two ways, running the test suite each time.

The cr-report tool is useful for examining sessions, and it’s main purpose is to give you summary reports after an
entire session has been executed, which we’ll do in the next step.

Execution

Now that you’ve initialized and baselined your session, it’s time to start making mutants and testing them. We do this
with the exec command. exec looks in your session file, tutorial.sqlite, for any mutations which were
detected in the init phase that don’t yet have results. For each of these, it performs the specified mutation
and runs the test suite.

As we saw, we only have two mutations to make, and our test suite is very small. As a result the exec command will
run quite quickly:

cosmic-ray exec tutorial.toml tutorial.sqlite

This should produce no output.

Note

The module and test suite for this tutorial are “toys” by design. As such, they run very quickly. Most real-world
modules and test suites are much more substantial and require much longer to run. For example, if a test suite takes
10 seconds to run and Cosmic Ray finds 1000 mutations, a full exec will take 10 x 1000 = 10,000 seconds, or
about 2.7 hours.

Reporting the results

Assuming it ran correctly, we can now use cr-report to see the updated state of our session:

cr-report tutorial.sqlite --show-pending

This time we see that both mutations were made, tests were run for each, and both were “killed”:

8f0e988866f447d085ce9887e6e900e5 mod.py core/NumberReplacer 0
worker outcome: normal, test outcome: killed
574ac31ac7d14169a8dc45d988803e69 mod.py core/NumberReplacer 1
worker outcome: normal, test outcome: killed
total jobs: 2
complete: 2 (100.00%)
surviving mutants: 0 (0.00%)

Tip

You don’t have to wait for exec to complete to generate a report. If you have a long-running session and want to
see your progress, you can execute cr-report while cosmic-ray exec is running to view the progress the
latter is making.

HTML reports

You can also generate a handy HTML report with cr-html:

cr-html tutorial.sqlite > report.html

You can then open report.html in your browser to see the details. One nice feature of these HTML reports is
that they show the actual mutation that was used.

Tutorial: Distributed, concurrent mutation testing

One of the main practical challenges to mutation testing is that it can
take a long time. Even on moderately sized projects, you might need
millions of individual mutations and test runs. This can be prohibitive
to run on a single system.

One way to cope with these long runtimes is to parallelize the mutation and
testing procedures. Fortunately, mutation testing is embarassingly parallel in
nature [https://en.wikipedia.org/wiki/Embarrassingly_parallel], so we can
apply some relatively simple techniques to get really nice scaling up of the
work. To support parallel execution of mutation testing runs, Cosmic Ray has the
notion of distributors which can control where and how tests are run.
Different distributors can run tests in different contexts: in parallel on a single
machine, by distributing them across a message bus, or perhaps by spawning test
runs on cloud systems.

The HTTP distributor

Cosmic Ray includes cosmic_ray.distributors.http.HttpDistributor, a distributor which allows you to send
mutation-and-test requests to workers running locally or remotely. You can run as many of these workers as you
want, thereby making it possible to run as many mutations in parallel as you want.

Each worker is a small HTTP server, listening for requests from the exec command to perform a mutation and test. Each worker handlers
only one mutation request at a time. Critically, each worker has its own copy of the code under test, meaning that it can make mutations
to that copy of the code without interfering with other workers.

You need to make sure that workers are running prior to running the exec command. exec doesn’t have any support
for starting workers. The major configuration involved with the HTTP distributor is telling exec where there workers
are listening.

A sample project

To demonstrate HttpDistributor we’ll need a sample module and test suite. We’ll use a very simple set
of code, as we did in the basic tutorial.

Create a new directory to hold this code. We’ll refer to this directory as ROOT.

Create the file ROOT/mod.py with these contents:

def func():
 return 1234

Then create ROOT/test_mod.py with these contents:

import unittest
import mod

class Tests(unittest.TestCase):
 def test_func(self):
 self.assertEqual(mod.func(), 1234)

Finally, we’ll create a configuration, ROOT/config.toml:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	[cosmic-ray]
module-path = "mod.py"
timeout = 10.0
excluded-modules = []
test-command = "python -m unittest test_mod.py"

[cosmic-ray.distributor]
name = "http"

[cosmic-ray.distributor.http]
worker-urls = ["http://localhost:9876"]

This config is similar to others that we’ve looked at, with the major difference that it specifies the use of the ‘http’
distributor rather than ‘local’. On line 8 we set “cosmic-ray.distributor.name” to “http”.

Then on line 11 we set the “cosmic-ray.distributor.http.worker-urls” setting to a list containing a URL. This is the
address at which a worker will be listening for mutation requests. This configuration only specifies a single worker,
but we can put as many workers here as we want.

Starting a worker

Before Cosmic Ray can send requests to a worker, we need to start it. From the ROOT directory, start a worker using the
http-worker command:

cd $ROOT
cosmic-ray --verbosity INFO http-worker --port 9876

The --verbosity INFO argument configures the worker’s logging to show more messages than normal. The --port 9876
argument instructs it to listen for requests on port 9876, the same port we specified in the ‘worker-urls’ list in our
configuration. The worker will tell you that it’s waiting to process requests on port 9876:

======== Running on http://0.0.0.0:9876 ========
(Press CTRL+C to quit)

Running the tests

We need to leave the worker running in its own terminal, so for these next steps you’ll need to start a new terminal.

First we need to initialize a new Cosmic Ray session:

cd $ROOT
cosmic-ray init config.toml session.sqlite

Once the session is created, we can execute the tests:

cosmic-ray exec config.toml session.sqlite

This should execute very quickly. The most important thing to note is that our worker process is where the mutation
and testing actually occurred. If you switch back to the terminal hosting your worker, you should see that it
produced output something like this:

[05/16/21 11:31:10] INFO INFO:cosmic_ray.mutating:Applying mutation: path=mod.py, mutating.py:111
 op=<cosmic_ray.operators.number_replacer.NumberReplacer object at 0x10d2b9550>,
 occurrence=1
 INFO INFO:cosmic_ray.testing:Running test (timeout=10.0): python -m unittest test_mod.py testing.py:36
 INFO INFO:aiohttp.access:::1 [16/May/2021:09:31:10 +0000] "POST / HTTP/1.1" 200 899 "-" web_log.py:206
 "Python/3.7 aiohttp/3.7.4.post0"
 INFO INFO:cosmic_ray.mutating:Applying mutation: path=mod.py, mutating.py:111
 op=<cosmic_ray.operators.number_replacer.NumberReplacer object at 0x10d4cdf60>,
 occurrence=0
 INFO INFO:cosmic_ray.testing:Running test (timeout=10.0): python -m unittest test_mod.py testing.py:36
[05/16/21 11:31:11] INFO INFO:aiohttp.access:::1 [16/May/2021:09:31:10 +0000] "POST / HTTP/1.1" 200 899 "-" web_log.py:206
 "Python/3.7 aiohttp/3.7.4.post0"

Congratulations! You’ve just performed your first distributed mutation testing with Cosmic Ray. There are other details
you need to consider when scaling beyond a single worker, but this small example covers the most important elements:
setting up the configuration and starting a worker.

At this point you can kill the worker you started earlier.

Concurrent execution with multiple workers

In the previous example we only ran a single worker process, so from a concurrency point of view this was no different from
using the ‘local’ distributor. Before we can run multiple workers, though, we need to consider what resources each worker
requires. Ultimately, each worker needs two things:

	An HTTP endpoint

	A copy of the code under test that it can modify

In this example we’ll create the unique endpoints by giving each worker its own port. In principle, though, workers may be
running on entirely different machines on a network.

Distinct copies of the code

Cosmic Ray mutation works by actually modifying the code on disk. As such, multiple workers can’t share a single copy of the code; their
mutations would interfere with one another. So we need to make sure each worker has a copy of the code under test.

For this example, we’ll manually copy the files around:

cd $ROOT
mkdir worker1
cp mod.py worker1
cp test_mod.py worker1
mkdir worker2
cp mod.py worker2
cp test_mod.py worker2

Now the directories worker1 and worker2 contain separate copies of the code under test.

Starting the workers

Now we can start the workers. Remember that each will run in its own terminal. In one terminal, start the first worker:

cd $ROOT/worker1
cosmic-ray --verbosity INFO http-worker --port 9876

Then in another terminal start a second worker:

cd $ROOT/worker2
cosmic-ray --verbosity INFO http-worker --port 9877

Note that the workers are using different ports.

Update the configuration

To tell Cosmic Ray to use both of these workers, we need to update our configuration. Edit config.toml to specify
both workers URLs:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	[cosmic-ray]
module-path = "mod.py"
timeout = 10.0
excluded-modules = []
test-command = "python -m unittest test_mod.py"

[cosmic-ray.distributor]
name = "http"

[cosmic-ray.distributor.http]
worker-urls = ["http://localhost:9876", "http://localhost:9877"]

On line 11 we now list the endpoints for both workers.

Running the tests

We’re now ready to run the tests. Go back to ROOT and re-initialize your session:

cd $ROOT
cosmic-ray init config.toml session.sqlite

Finally, we can execute the tests:

cosmic-ray exec config.toml session.sqlite

If you run cr-report you should see that two tests were run and that there were no survivors:

$ cr-report session.sqlite
e4e56a71a059466f861d62c987988efe mod.py core/NumberReplacer 0
worker outcome: normal, test outcome: killed
7820da3f68cd40a7b60d69506e87c4aa mod.py core/NumberReplacer 1
worker outcome: normal, test outcome: killed
total jobs: 2
complete: 2 (100.00%)
surviving mutants: 0 (0.00%)

Likewise, if you look at the terminals for your two workers, you should see that they each received a request to perform
a mutation test.

That’s really all there is to distributed mutation testing with HttpDistributor. You simply start as many workers as you
need, specifying their endpoints in your configuration.

Important

At this point you should kill the workers you started.

cr-http-workers: A tool for starting workers

It’s extremely common for the code under test (and the tests themselves) to be in a git repository. As such, a simple
way to create the isolated copies of the code that each worker requires is to clone this git repository. Once the
mutation testing is done, these clones can be deleted.

To simplify this process Cosmic Ray provides cr-http-workers. This program reads your configuration to
determine how many workers to start, and you provide it with a git repository to clone. For each ‘worker-url’ in your
configuration it will clone the git repository and start a worker in that clone. You can then run exec to distribute
work to those workers. Once the testing is over, you can kill cr-http-workers and it will clean up the workers and
their clones.

Preparing the git repository

To use cr-http-workers we first need a git repository, so we’ll create one from our existing code.

Note

You should first delete the worker1 and worker2 directories if they still exist. This isn’t critical, but it
might be confusing to leave them around.

Here’s how to initialize the git repository:

cd $ROOT
git init
git add mod.py
git add test_mod.py
git commit -a -m "initialized repo"

Running the workers

Once the git repo is initialized, we can start the workers:

cr-http-workers config.toml .

This tell cr-http-workers to read config.toml to determine the worker endpoints. The second argument, “.”, tells
it to clone the git repository in the current directory. In practice this repo URL will often be hosted elsewhere (e.g.
github), but for our purposes we’ll just work with the local repo.

This will start both workers processes, and the output from those workers will be shown in the output from
cr-http-workers.

Running the tests

Once the workers are running, running the tests just involves the standard init and exec commands:

cd $ROOT
cosmic-ray init config.toml session.sqlite
cosmic-ray exec config.toml session.sqlite

Remember that you’ll need to run this in another terminal.

Once the tests complete you can kill the cr-http-workers process. There’s not much more to it than that!

Limitations

The main limitation of cr-http-workers is that it can only start workers on your local machine. If you want to run
workers on other machines, you’ll need to use some other mechanism. But very often, being able to run multiple workers
on a single machine is a huge gain for mutation testing. Mutation testing time will scale down linearly with the number
of workers you run, so running 4 workers on your system will - within certain limits - let you run your mutation testing
4 times faster.

Alternatives to HttpDistributor

If HttpDistributor doesn’t meet your needs, Cosmic Ray allows you to write your own distributor and use it as a
plugin. You might want to write a distributor plugin using Celery [https://docs.celeryproject.org/en/stable/getting-started/introduction.html], for example, to take advantage of its
sophisticated message bus.

Concepts

Cosmic Ray comprises a number of important and potentially confusing concepts.
In this section we’ll look at each of these concepts, explaining their role in
Cosmic Ray and how they relate to other concepts. We’ll also use this section to
establish the terminology that we’ll use throughout the rest of the
documentation.

Operators

An operator in Cosmic Ray is a class that represents a specific type of
mutation. The first role of an operator is to identify points in the code where
a specific mutation can be applied. The second role of an operator is to
actually perform the mutation when requested.

An example of an operator is
cosmic_ray.operators.break_continue. As its name
implies, this operator mutates code by replacing break with continue.
During
the initialization of a session, this operator identifies all of the locations
in the code where this mutation can be applied. Then, during execution of a
session, it actually mutates the code by replacing break nodes with
continue
nodes.

Operators are exposed to Cosmic Ray via plugins, and users can choose to extend
the available operator set by providing their own operators. Operators are
implemented as subclasses of cosmic_ray.operators.operator.Operator.

Distributors

Distributors determine the context in which tests are executed. The primary examples of distributors are
cosmic_ray.distribution.local.LocalDistributor and cosmic_ray.distribution.http.HttpDistributor. The
local distributor tests on the local machine, modifying an existing copy of the code in-place, running each test
serially with no concurrency.

The http distributor distributes tests to remote workers via HTTP. There can be any number of workers, and they can run the
tests in parallel. Because of this concurrency, each HTTP worker will generally have its own copy of the code under
test.

Distributors have broad control over how they execute tests. During the execution phase they are given a sequence of
pending mutations to execute, and it’s their job to execute the tests in the appropriate context and return a result.
Cosmic Ray doesn’t impose any real constraints on how distributors accomplish this.

Distributors can require arbitrarily complex infrastructure and configuration. For example, the HTTP distributor requires
you to start the workers prior to starting execution, and it requires that you provide each worker with its own
copy of the code under test.

Distributors are implemented as plugins to Cosmic Ray. They are dynamically discovered, and users can create their own
distributors. Cosmic Ray includes two execution engines plugins, local and http.

Configurations

A configuration is a TOML file that describes the work that Cosmic Ray will do. For example, it tells Cosmic Ray which
modules to mutate, how to run tests, which tests to run, and so forth. You need to create a config before doing any real
work with Cosmic Ray.

You can create a skeleton config by running cosmic-ray new-config <config file>. This will ask you a series of
questions and create a config from the answers. Note that this config will generally be incomplete and require you to
edit it for completeness.

In many Cosmic Ray examples we’ll use the name “config.toml” for configurations. You are not required to use this name,
however. You can use any file name you want for your configurations.

Important

The full set of configuration options are not currently well documented. Each plugin can, in principle and often in
practice, use their own specialized configuration options. We need to work on making the documentation of these
options automatic and part of the plugin API. For detail on configuration options, the best place to check is
currently in the tests/example_project directory.

Sessions

Cosmic Ray has a notion of sessions which encompass an entire mutation testing run. Essentially, a session is a
database which records the work that needs to be done for a run. Then as results are available from workers that do the
actual testing, the database is updated with results. By having a database like this, Cosmic Ray can safely stop in the
middle of a (potentially very long) session and be restarted. Since the session knows which work is already completed,
it can continue where it left off.

Sessions also allow for arbitrary post-facto analysis and report generation.

Initializing sessions

Before you can do mutation testing with Cosmic Ray, you need to first initialize a session. You can do this using the
init command. With this command you tell Cosmic Ray a) the name of the session, b) which module(s) you wish to
mutate and c) the location of the test suite. For example, to mutate the package allele, using the unittest to
run the tests in allele_tests, and using the local execution engine, you could first need to create a
configuration like this:

[cosmic-ray]
module-path = "allele"
timeout = 10
exclude-modules = []
test-command = python -m unittest allele_tests
distributor.name = "local"

You would run cosmic-ray init like this:

cosmic-ray init config.toml session.sqlite

You’ll notice that this creates a new file called allele_session.sqlite. This is the database for your session.

Test suite

To be able to kill the mutants Cosmic Ray uses your test cases. But the mutants are not considered “more dead” when more
test cases fail. Given that a single failing test case is sufficient to kill a mutant, it’s a good idea to configure the
test runner to exit as soon as a failing test case is found.

For pytest and nose that can be achieved with the -x option.

An important note on separating tests and production code

Cosmic Ray has a relatively simple view of how to mutate modules. Fundamentally, it will attempt to mutate any and all
code in a module. This means that if you have test code in the same module as your code under test, Cosmic Ray will
happily mutate the test code along with the production code. This is probably not what you want.

The best way to avoid this problem is to keep your test code in separate modules from your production code. This way you
can tell Cosmic Ray precisely what to mutate.

Ideally, your test code will be in a different package from your production code. This way you can tell Cosmic Ray to
mutate an entire package without needing to filter anything out. However, if your test code is in the same package as
your production code (a common configuration), you can use the exclude-modules setting in your configuration to
prevent mutation of your tests.

Given the choice, though, we recommend keeping your tests outside of the package for your code under test.

Executing tests

Once a session has been initialized, you can start executing tests by using the exec command. This command
needs the config and the session you provided to init:

cosmic-ray exec config.toml session.sqlite

Normally this won’t produce any output unless there are errors.

Viewing the results

Once your tests have completed, you can view the results using the cr-report command:

cr-report test_session.sqlite

This will give you detailed information about what work was done, followed by a summary of the entire session.

Test commands

The test-command field of a configuration tells Cosmic Ray how to run tests. Cosmic Ray runs this command from
whatever directory you run the exec command (or, in the case of remote execution, in whatever directory the remote
command handler is running).

Timeouts

One difficulty mutation testing tools have to face is how to deal with mutations that result in infinite loops (or other
pathological runtime effects). Cosmic Ray takes the simple approach of using a timeout to determine when to kill a
test and consider it incompetent. That is, if a test of a mutant takes longer than the timeout, the test is killed,
and the mutant is marked incompetent.

You specify a test time through the timeout configuration key. This key specifies an absolute number of seconds that
a test will be allowed to run. After the timeout is up, the test is killed. For example, to specify that tests should
timeout after 10 seconds, use:

config.toml
[cosmic-ray]
timeout = 10

How-tos

	Filters

	Implementation

	Mutation Operators

Filters

The cosmic-ray init commands scans a module for all possible mutations, but we don’t always want to execute all of
these. For example, we may know that some of these mutations will result in equivalent mutants, so we need a way to
prevent these mutations from actually being run.

To account for this, Cosmic Ray includes a number of filters. Filters are nothing more than programs - generally small
ones - that modify a session in some way, often by marking certains mutations as “skipped”, thereby preventing them from
running. The name “filter” is actually a bit misleading since these programs could modify a session in ways other than
simply skipping some mutations. In practice, though, the need to skip certain tests is by far the most common use of
these programs.

Using filters

Generally speaking, filters will be run immediately after running cosmic-ray init. It’s up to you to decide which to
run, and often they will be run along with init in a batch script or CI configuration.

For example, if you wanted to apply the cr-filter-pragma filter to your session, you could do something like this:

cosmic-ray init cr.conf session.sqlite
cr-filter-pragma session.sqlite

The init would first create a session where all mutation would be run, and then the cr-filter-pragma call
would mark as skipped all mutations which are on a line with the pragma comment.

Filters included with Cosmic Ray

Cosmic Ray comes with a number of filters. Remember, though, that they are nothing more than simple programs that modify
a session in some way; it should be straightforward to write your own filters should the need arise.

cr-filter-operators

cr-filter-operators allows you to filter out operators according to their names. You provide the filter with a set
of regular expressions, and any Cosmic Ray operator who’s name matches a one of these expressions will be skipped
entirely.

The configuration is provided through a TOML file such as a standard Cosmic Ray configuration. The expressions must be
in a list at the key “cosmic-ray.filters.operators-filter.exclude-operators”. Here’s an example:

[cosmic-ray.filters.operators-filter]
exclude-operators = [
 "core/ReplaceComparisonOperator_Is(Not)?_(Not)?(Eq|[LG]tE?)",
 "core/ReplaceComparisonOperator_(Not)?(Eq|[LG]tE?)_Is(Not)?",
 "core/ReplaceComparisonOperator_[LG]tE_Eq",
 "core/ReplaceComparisonOperator_[LG]t_NotEq",
]

For a list of all operators in your Cosmic Ray installation, run cosmic-ray operators.

cr-filter-pragma

The cr-filter-pragma filter looks for lines in your source code containing the comment “# pragma: no mutate”. Any
mutation in a session that would mutate such a line is skipped.

cr-filter-git

The cr-filter-git filter looks for edited or new lines from the given git branch. Any mutation in a session that
would mutate other lines is skipped.

By default the master branch is used, but you could define another one like this:

[cosmic-ray.filters.git-filter]
branch = "rolling"

External filters

Other filters are defined in separate projects.

cosmic-ray-spor-filter

The cosmic-ray-spor-filter filter modifies a session by skipping mutations which are indicated in a spor [https://github.com/abingham/spor] anchored metadata repository. In short, spor provides a way to associated
arbitrary metadata with ranges of code, and this metadata is stored outside of the code. As your code changes, spor
has algorithms to update the metadata (and its association with the code) automatically.

Get more details at the project page [https://github.com/abingham/cosmic-ray-spor-filter].

Implementation

Cosmic Ray works by parsing the module under test (MUT) and its submodules into
abstract syntax trees using parso [https://github.com/davidhalter/parso]. It
walks the parse trees produced by parso, allowing mutation operators to modify
or delete them. These modified parse trees are then turned back into code which
is written to disk for use in a test run.

For each individual mutation, Cosmic Ray applies a mutation to the code on disk.
It then uses user-supplied test commands to run tests against mutated code.

In effect, the mutation testing algorithm is something like this:

for mod in modules_under_test:
 for op in mutation_operators:
 for site in mutation_sites(op, mod):
 mutant_ast = mutate_ast(op, mod, site)
 write_to_disk(mutant_ast)

 try:
 if discover_and_run_tests():
 print('Oh no! The mutant survived!')
 else:
 print('The mutant was killed.')
 except Exception:
 print('The mutant was incompetent.')

Obviously this can result in a lot of tests, and it can take some time
if your test suite is large and/or slow.

Mutation Operators

In Cosmic Ray we use mutation operators to implement the various forms
of mutation that we support. For each specific kind of mutation –
constant replacement, break/continue swaps, and so forth – there is an
operator class that knows how to create that mutation from un-mutated
code.

Implementation details

Cosmic Ray relies on parso [https://github.com/davidhalter/parso] to parse
Python code into trees. Cosmic Ray operators work directly on this tree, and the
results of modifying this tree are written to disk for each mutation.

Each operator is ultimately a subclass of
cosmic_ray.operators.operator.Operator. We pass operators to various
parse-tree visitors that let the operator view and modify the tree. When an
operator reports that it can potentially modify a part of the tree, Cosmic Ray
notes this and, later, asks the operator to actually perform this mutation.

Implementing an operator

To implement a new operator you need to create a subclass of
cosmic_ray.operators.operator.Operator. The first method an operator must implement
is Operator.mutation_positions() which tells Cosmic Ray how the operator could mutate
a particular parse-tree node.

Second, an operator subclass must implement Operator.mutate() which actually mutates
a parse-tree node.

Finally, an operator must implement the class method Operator.examples().
This provides a set of before and after code snippets showing how the operator
works. These examples are used in the test suite and potentially for
documenation purposes. An operator can choose to provide no examples simply by
returning an empty iterable from examples, though we may decide to check
for an absence of examples in the future. In any case, it’s good form to provide
examples.

In both cases, the operator implementation works directly with the parso
parse tree objects.

Operator provider plugins

Cosmic Ray is designed to be extended with arbitrary operators provided by
users. It dynamically discovers operators at runtime using the stevedore
plugin system which relies on the setuptools entry_points concept.

Rather than having individual plugins for each operator, Cosmic Ray lets users
specify operator provider plugins. An operator provider can supply any number
of operators to Cosmic Ray. At a high level, Cosmic Ray finds all of the
operators available to it by iterating over the operator provider plugins, and
for each of those iterating over the operators that it exposes.

The operator provider API is very simple:

class OperatorProvider:
 def __iter__(self):
 "The sequence of operator names that this provider supplies"
 pass

 def __getitem__(self, name):
 "Get an operator class by name."
 pass

In other words, a provider must have a (locally) unique name for each operator
it provides, it must provide an iterator over those names, and it must allow
Cosmic Ray to look up operator classes by name.

To make a new operator provider available to Cosmic Ray you need to create a
cosmic_ray.operator_providers entry point; this is generally done in
setup.py. We’ll show an example of how to do this later.

Operator naming

All operators in Cosmic Ray have a unique name for any given session. The name
of an operator is based on two elements:

	The name of the operator_provider entry point (i.e. as specified in
setup.py)

	The name that the provider associates with the operator.

The full name of an operator is simply the provider’s name and the operator’s
name joined with “/”. For example, if the provider’s name was “widget_corp” and
the operator’s name was “add_whitespace”, the full name of the operator would be
“widget_corp/add_whitespace”.

A full example: NumberReplacer

One of the operators bundled with Cosmic Ray is implemented with the clas
cosmic_ray.operators.number_replacer.NumberReplacer. This operator looks for
Num nodes (number literals in source code) and replaces them with new
Num nodes that have a different numeric value. To demonstrate how to create
a mutation operator and provider, we’ll step through how to create that operator
in a new package called example.

Creating the operator class

The initial layout for our package is like this:

setup.py
example/
 __init__.py

__init__.py is empty and setup.py has very minimal content:

from setuptools import setup

setup(
 name='example',
 version='0.1.0',
)

The first thing we need to do is create a new Python source file to hold
our new operator. Create a file named number_replacer.py in the
example directory. It has the following contents:

from cosmic_ray.operators.operator import Operator
import parso

class NumberReplacer(Operator):
 """An operator that modifies numeric constants."""

 def mutation_positions(self, node):
 if isinstance(node, parso.python.tree.Number):
 yield (node.start_pos, node.end_pos)

 def mutate(self, node, index):
 """Modify the numeric value on `node`."""

 assert isinstance(node, parso.python.tree.Number)

 val = eval(node.value) + 1
 return parso.python.tree.Number(' ' + str(val), node.start_pos)

Let’s step through this line-by-line. We first import Operator because we need to inherit from it:

from cosmic_ray.operators.operator import Operator

We then import parso because we need to use it to create mutated nodes:

import parso

We define our new operator by creating a subclass of Operator called
NumberReplacer:

class NumberReplacer(Operator):

The mutate_positions method is called whenever Cosmic Ray needs to know if an operator can mutate a particular
node. We implement ours to report a single mutation at each “number”:

def mutation_positions(self, node):
 if isinstance(node, parso.python.tree.Number):
 yield (node.start_pos, node.end_pos)

Finally we implement Operator.mutate() which is called to actually
perform the mutation. mutate() should return one of:

	None if the node argument should be removed from the tree, or

	a new parso node to replace the original one

In this case, we simply create a new Number node with a new value and
return it:

def mutate(self, node, index):
 """Modify the numeric value on `node`."""

 assert isinstance(node, parso.python.tree.Number)

 val = eval(node.value) + 1
 return parso.python.tree.Number(' ' + str(val), node.start_pos)

That’s all there is to it. This mutation operator is now ready to be
applied to any code you want to test.

However, before it can really be used, you need to make it available as
a plugin.

Creating the provider

In order to expose our operator to Cosmic Ray we need to create an operator
provider plugin. In the case of a single operator like ours, the provider
implementation is very simple. We’ll put the implementation in
example/provider.py:

example/provider.py

from .number_replacer import NumberReplacer

class Provider:
 _operators = {'number-replacer': NumberReplacer}

 def __iter__(self):
 return iter(Provider._operators)

 def __getitem__(self, name):
 return Provider._operators[name]

Creating the plugin

In order to make your operator available to Cosmic Ray as a plugin, you
need to define a new cosmic_ray.operator_providers entry point. This is
generally done through setup.py, which is what we’ll do here.

Modify setup.py with a new entry_points argument to setup():

setup(
 . . .
 entry_points={
 'cosmic_ray.operator_providers': [
 'example = example.provider:Provider'
]
 })

Now when Cosmic Ray queries the cosmic_ray.operator_providers entry point it
will see your provider - and hence your operator - along with all of the others.

Reference

	cosmic_ray.distribution.distributor

	cosmic_ray.distribution.local

	cosmic_ray.distribution.http

	cosmic_ray.operators

	Commands

	Concurrency

	Tests

	Continuous Integration

	Badge

cosmic_ray.distribution.distributor

Base distributor implementation details.

	
class cosmic_ray.distribution.distributor.Distributor

	Base class for work distribution strategies.

cosmic_ray.distribution.local

cosmic_ray.distribution.http

cosmic_ray.operators

break_continue

binary_operator_replacement

boolean_replacer

Implementation of the no-op operator.

	
class cosmic_ray.operators.no_op.NoOp

	An operator that makes no changes.

This is primarily for baselining and debugging. It behaves like any other operator, but it makes no changes.
Obviously this means that, if your test suite passes on unmutated code, it will still pass after applying this
operator. Use with care.

	
classmethod examples()

	Examples of the mutations that this operator can make.

This is primarily for testing purposes, but it could also be used for
docmentation.

Each example is a tuple of the form (from-code, to-code, index). The
index is optional and will be assumed to be 0 if it’s not included.
The from-code is a string containing some Python code prior to
mutation. The to-code is a string desribing the code after mutation.
index indicates the occurrence of the application of the operator to
the code (i.e. for when an operator can perform multiple mutation to a
piece of code).

Returns: An iterable of example tuples.

	
mutate(node, index)

	Mutate a node in an operator-specific manner.

Return the new, mutated node. Return None if the node has
been deleted. Return node if there is no mutation at all for
some reason.

	
mutation_positions(node)

	All positions where this operator can mutate node.

An operator might be able to mutate a node in multiple ways, and this
function should produce a position description for each of these
mutations. Critically, if an operator can make multiple mutations to the
same position, this should produce a position for each of these
mutations (i.e. multiple identical positions).

	Parameters

	node – The AST node being mutated.

	Returns

	An iterable of ((start-line, start-col), (stop-line, stop-col))
tuples describing the locations where this operator will mutate node.

Implementation of operator base class.

	
class cosmic_ray.operators.operator.Operator

	The mutation operator base class.

	
classmethod examples()

	Examples of the mutations that this operator can make.

This is primarily for testing purposes, but it could also be used for
docmentation.

Each example is a tuple of the form (from-code, to-code, index). The
index is optional and will be assumed to be 0 if it’s not included.
The from-code is a string containing some Python code prior to
mutation. The to-code is a string desribing the code after mutation.
index indicates the occurrence of the application of the operator to
the code (i.e. for when an operator can perform multiple mutation to a
piece of code).

Returns: An iterable of example tuples.

	
mutate(node, index)

	Mutate a node in an operator-specific manner.

Return the new, mutated node. Return None if the node has
been deleted. Return node if there is no mutation at all for
some reason.

	
mutation_positions(node)

	All positions where this operator can mutate node.

An operator might be able to mutate a node in multiple ways, and this
function should produce a position description for each of these
mutations. Critically, if an operator can make multiple mutations to the
same position, this should produce a position for each of these
mutations (i.e. multiple identical positions).

	Parameters

	node – The AST node being mutated.

	Returns

	An iterable of ((start-line, start-col), (stop-line, stop-col))
tuples describing the locations where this operator will mutate node.

Utilities for implementing operators.

	
cosmic_ray.operators.util.extend_name(suffix)

	A factory for class decorators that modify the class name by appending some text to it.

Example:

@extend_name('_Foo')
class Class:
 pass

assert Class.__name__ == 'Class_Foo'

Commands

TODO: This is pretty wildly out of date! Perhaps we can use value-add to do this.

Details of Common Commands

Most Cosmic Ray commands use a verb-options pattern, similar to how git
does things.

Possible verbs are:

	exec

	help

	init

	load

	new-config

	operators

	dump

	run

	worker

	apply

	baseline

Detailed information on each command can be found by running
cosmic-ray help <command> in the terminal.

Cosmic Ray also installs a few other separate commands for producing
various kinds of reports. These commands are:

	cr-report: provides a report on the status of a session

	cr-rate: prints the survival rate of a session

	cr-html: prints an HTML report on a session

Verbosity: Getting more Feedback when Running

The base command, cosmic-ray, has a single option: --verbose.
The --verbose option changes the internal logging level from
WARN to INFO and thus prints more information to the terminal.

When used with init, --verbose will list how long it took to
create the mutation list and will also list which modules were found:

(.venv-pyerf) ~/PyErf$ cosmic-ray --verbose init --baseline=2 test_session pyerf -- pyerf/tests
INFO:root:timeout = 0.259958 seconds
INFO:root:Modules discovered: ['pyerf.tests', 'pyerf.tests.test_pyerf', 'pyerf.pyerf', 'pyerf', 'pyerf.__about__']
(.venv-pyerf) C:\dev\PyErf>cosmic-ray --verbose init --baseline=2 test_session pyerf --exclude-modules=.*tests.* -- pyerf/tests
INFO:root:timeout = 0.239948 seconds
INFO:root:Modules discovered: ['pyerf.pyerf', 'pyerf', 'pyerf.__about__']

When used with exec, --verbose displays which mutation is
currently being tested:

(.venv-pyerf) ~/PyErf$ cosmic-ray --verbose exec test_session
INFO:cosmic_ray.tasks.worker:executing: ['cosmic-ray', 'worker', 'pyerf.pyerf', 'number_replacer', '0', 'unittest', '--', 'pyerf/tests']
INFO:cosmic_ray.tasks.worker:executing: ['cosmic-ray', 'worker', 'pyerf.pyerf', 'number_replacer', '1', 'unittest', '--', 'pyerf/tests']
INFO:cosmic_ray.tasks.worker:executing: ['cosmic-ray', 'worker', 'pyerf.pyerf', 'number_replacer', '2', 'unittest', '--', 'pyerf/tests']
INFO:cosmic_ray.tasks.worker:executing: ['cosmic-ray', 'worker', 'pyerf.pyerf', 'number_replacer', '3', 'unittest', '--', 'pyerf/tests']
INFO:cosmic_ray.tasks.worker:executing: ['cosmic-ray', 'worker', 'pyerf.pyerf', 'number_replacer', '4', 'unittest', '--', 'pyerf/tests']
INFO:cosmic_ray.tasks.worker:executing: ['cosmic-ray', 'worker', 'pyerf.pyerf', 'number_replacer', '5', 'unittest', '--', 'pyerf/tests']
INFO:cosmic_ray.tasks.worker:executing: ['cosmic-ray', 'worker', 'pyerf.pyerf', 'number_replacer', '6', 'unittest', '--', 'pyerf/tests']

The --verbose option does not add any additional information to the
dump verb.

Command: init

The init verb creates a list of mutations to apply to the source
code. It has the following optional arguments:

	--no-local-import: Allow importing module from the current
directory.

The init verb use following entries from the configuration file:

	[cosmic-ray] exclude-modules = []: Exclude modules matching those glob
patterns from mutation. Use glob.glob syntax.

Sample for django projects:

exclude-modules = ["*/tests/*", "*/migrations/*"]

As mentioned in
here,
test directory can be handled via the excluded-modules option.

The list of files that will be mutate effectively can be show by running
cosmic-ray init with INFO debug level:

cosmic-ray init -v INFO

Command: exec

The exec command is what actually runs the mutation testing.

Command: dump

The dump command writes a detailed JSON representation of a session
to stdout.

$ cosmic-ray dump test_session
{"data": ["<TestReport 'test_project/tests/test_adam.py::Tests::test_bool_if' when='call' outcome='failed'>"], "test_outcome": "killed", "worker_outcome": "normal", "diff": ["--- mutation diff ---", "--- a/Users/sixtynorth/projects/sixty-north/cosmic-ray/test_project/adam.py", "+++ b/Users/sixtynorth/projects/sixty-north/cosmic-ray/test_project/adam.py", "@@ -20,7 +20,7 @@", " return (not object())", " ", " def bool_if():", "- if object():", "+ if (not object()):", " return True", " raise Exception('bool_if() failed')", " "], "module": "adam", "operator": "cosmic_ray.operators.boolean_replacer.AddNot", "occurrence": 0, "line_number": 32, "command_line": ["cosmic-ray", "worker", "adam", "add_not", "0", "pytest", "--", "-x", "tests"], "job_id": "c2bb71e6203d44f6af42a7ee35cb5df9"}
. . .

dump is designed to allow users to develop their own reports. To do
this, you need a program which reads a series of JSON structures from
stdin.

Concurrency

Note that most Cosmic Ray commands can be safely executed while exec is
running. One exception is init since that will rewrite the work manifest.

For example, you can run cr-report on a session while that session is being
executed. This will tell you what progress has been made.

Tests

Cosmic Ray has a number of test suites to help ensure that it works. To
install the necessary dependencies for testing, run:

pip install -e .[dev,test]

pytest suite

The first suite is a pytest [http://pytest.org/] test suite that
validates some if its internals. You can run that like this:

pytest tests/test_suite

The “adam” tests

There is also a set of tests which verify the various mutation
operators. These tests comprise a specially prepared body of code,
adam.py, and a full-coverage test-suite. The idea here is that
Cosmic Ray should be 100% lethal against the mutants of adam.py or
there’s a problem.

We have “adam” configurations for each of the
test-runner/execution-engine combinations. For example, the
configuration which uses unittest and the local execution
engine is in test_project/cosmic-ray.unittest.local.conf.

To run an “adam” test, first switch to the test_project directory:

cd tests/example_project

Then initialize a new session using one of the configurations. Here’s an
example using the pytest/local configuration:

cosmic-ray init cosmic-ray.pytest.local.conf pytest-local.sqlite

(Note that if you were going to use the celery4 engine instead, you
need to make sure that celery workers were running.)

Execute the session like this:

cosmic-ray exec pytest-local.sqlite

Finally, view the results of this test with dump and cr-report:

cr-report pytest-local.sqlite

You should see a 0% survival rate at the end of the report.

The full test suite

While the “adam” tests verify the various mutation operators in Cosmic
Ray, the full test suite comprises a few more tests for other behaviors
and functionality. To run all of these tests, it’s often simplest to use tox. Just run:

$ tox

at the root of the project.

Continuous Integration

Cosmic Ray has a continuous integration system based on Travis [https://travis-ci.org]. Whenever we push new changes to our github
repository, travis runs a set of tests. These tests include
low-level unit tests, end-to-end integration tests, static analysis (e.g.
linting), and testing documentation builds. Generally speaking, these tests are
run on all versions of Python which we support.

Automated release deployment

Cosmic Ray also has an automated release deployment scheme. Whenever you push
changes to the release
branch [https://github.com/sixty-north/cosmic-ray/tree/release], travis attempts
to make a new release. This process involves determining the release version by
reading cosmic_ray/version.py, creating and uploading PyPI distributions, and
creating new release tags in git.

Releasing a new version

As described above, the release process for Cosmic Ray is largely automatic. In
order to do a new release, you simply need to:

	Bump the version with bumpversion.

	Push it to master on github.

	Push the changes to the release branch on github.

Once the push is made to release, the automated release system will take over.

Note that only the Python 3.6 travis build will attempt to make a release
deployment. So to see the progress of your release, check the output for that
build.

Badge

Utility to generate badge useful to decorate your preferred
Continuous Integration system (github, gitlab, …).
The badge indicate the percentage of failing migrations.

This utility is based on anybadge [https://github.com/jongracecox/anybadge].

Command

cr-badge [--config <config_file>] <badge_file> <session-file>

Configuration

[cosmic-ray.badge]
label = "mutation"
format = "%.2f %%"

[cosmic-ray.badge.thresholds]
50 = 'red'
70 = 'orange'
100 = 'yellow'
101 = 'green'

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cosmic_ray	

 	
 	
 cosmic_ray.distribution.distributor	

 	
 	
 cosmic_ray.operators.no_op	

 	
 	
 cosmic_ray.operators.operator	

 	
 	
 cosmic_ray.operators.util	

Index

 C
 | D
 | E
 | M
 | N
 | O

C

 	
 	cosmic_ray.distribution.distributor (module)

 	cosmic_ray.operators.no_op (module)

 	
 	cosmic_ray.operators.operator (module)

 	cosmic_ray.operators.util (module)

D

 	
 	Distributor (class in cosmic_ray.distribution.distributor)

E

 	
 	examples() (cosmic_ray.operators.no_op.NoOp class method)

 	(cosmic_ray.operators.operator.Operator class method)

 	
 	extend_name() (in module cosmic_ray.operators.util)

M

 	
 	mutate() (cosmic_ray.operators.no_op.NoOp method)

 	(cosmic_ray.operators.operator.Operator method)

 	
 	mutation_positions() (cosmic_ray.operators.no_op.NoOp method)

 	(cosmic_ray.operators.operator.Operator method)

N

 	
 	NoOp (class in cosmic_ray.operators.no_op)

O

 	
 	Operator (class in cosmic_ray.operators.operator)

Distributors

TODO: Explain how to create a distributor.

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Cosmic Ray: mutation testing for Python

 		
 Theory

 		
 Tutorial: The basics

 		
 Installation

 		
 Source module and tests

 		
 Creating a configuration

 		
 The new-config command

 		
 Create a session and baseline

 		
 Initializing a session

 		
 Baselining

 		
 Examining the session with cr-report

 		
 Execution

 		
 Reporting the results

 		
 HTML reports

 		
 Tutorial: Distributed, concurrent mutation testing

 		
 The HTTP distributor

 		
 A sample project

 		
 Starting a worker

 		
 Running the tests

 		
 Concurrent execution with multiple workers

 		
 Distinct copies of the code

 		
 Starting the workers

 		
 Update the configuration

 		
 Running the tests

 		
 cr-http-workers: A tool for starting workers

 		
 Preparing the git repository

 		
 Running the workers

 		
 Running the tests

 		
 Limitations

 		
 Alternatives to HttpDistributor

 		
 Concepts

 		
 Operators

 		
 Distributors

 		
 Configurations

 		
 Sessions

 		
 Initializing sessions

 		
 Test suite

 		
 Executing tests

 		
 Viewing the results

 		
 Test commands

 		
 Timeouts

 		
 How-tos

 		
 Filters

 		
 Using filters

 		
 Filters included with Cosmic Ray

 		
 External filters

 		
 Implementation

 		
 Mutation Operators

 		
 Implementation details

 		
 Implementing an operator

 		
 Operator provider plugins

 		
 A full example: NumberReplacer

 		
 Reference

 		
 cosmic_ray.distribution.distributor

 		
 cosmic_ray.distribution.local

 		
 cosmic_ray.distribution.http

 		
 cosmic_ray.operators

 		
 break_continue

 		
 binary_operator_replacement

 		
 boolean_replacer

 		
 Commands

 		
 Details of Common Commands

 		
 Concurrency

 		
 Tests

 		
 pytest suite

 		
 The “adam” tests

 		
 The full test suite

 		
 Continuous Integration

 		
 Automated release deployment

 		
 Badge

 		
 Command

 		
 Configuration

